Applying soft computing approaches to river level forecasting

نویسندگان

  • LINDA SEE
  • STAN OPENSHAW
  • Stan Openshaw
چکیده

This paper assesses one of many potential enhancements to conventional flood forecasting that can be achieved through the use of soft computing technologies. A methodology is outlined in which the forecasting data set is split into subsets before training with a series of neural networks. These networks are then recombined via a rule-based fuzzy logic model that has been optimized using a genetic algorithm. The methodology is demonstrated using historical time series data from the Ouse River catchment in northern England. The model forecasts are assessed on global performance statistics and on a more specific flood-related evaluation measure, and they are compared to benchmarks from a statistical model and naive predictions. The overall results indicate that this methodology may provide a well performing, low-cost solution, which may be readily integrated into existing operational flood forecasting and warning systems. L'utilisation de logiciels pour la prévision du niveau des rivières Résumé Cet article évalue une des nombreuses améliorations possibles aux méthodes classiques de prévision des inondations que peut apporter l'utilisation de logiciels informatiques. La méthode exposée consiste à diviser les données en sous-ensembles avant de les utiliser pour le calage d'un ensemble de réseaux de neurones. Ces réseaux sont ensuite recombinés suivant un modèle de règles s'appuyant sur la logique floue, optimisé selon un algorithme génétique. La méthode est validée sur les données historiques de la rivière Ouse située dans le nord de l'Angleterre. Les modèles de prévision ont été évalués grâce à des statistiques d'ensemble et à des comparaisons concernant des inondations particulières puis comparés aux résultats d'un modèle statistique et à des prévisions intuitives. Dans l'ensemble il apparaît que cette méthode est très performante, que son coût est modéré et qu'elle peut-être facilement intégrée à des systèmes réels et opérationnels de prévision du risque d'inondation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of GIS & Soft Computing Techniques for Enhancing Flood Forecasting and Monitoring on the River – A case Study of Wainganga Tributary of River Godavari

Existing flood forecasting models are highly data specific, and their operational performance depends upon the science used to build and operate these models as well as their ability to respond to dynamic and rapidly changing events. Soft computing is one of the latest approaches for the development of systems, which possess computational intelligence. It attempts to integrate several different...

متن کامل

An Approach for Data Analysis and Forecasting with Neuro Fuzzy Systems - Demonstrated on Flood Events at River Mosel

The development and usage of soft computing systems for forecasting of water level progress in case of flood events at river Mosel are presented. The practical situation and its requirements are explained and two different system approaches are discussed: a) a neural network for supervised learning of the functional behavior of time series data and its approximation, and b) a fuzzy system for m...

متن کامل

Multi-model data fusion for river flow forecasting: an evaluation of six alternative methods

This paper evaluates six published data fusion strategies for hydrological forecasting based on two contrasting catchments: the River Ouse and the Upper River Wye. The input level and discharge estimates for each river comprised a mixed set of single model forecasts. Data fusion was performed using: arithmetic-averaging, a probabilistic method in which the best model from the last time step is ...

متن کامل

Modeling Ghotour-Chai River’s Rainfall-Runoff process by Genetic Programming

Considering the importance of water and computing the amount of rainfall runoff resulted from precipitation in recent decades, using appropriate methods for predicting the amount of runoff from rainfall date has been really essential. Rainfall-runoff models are used to estimate runoff generated from precipitation in the catchment area. Rainfall-runoff process is totally a non-linear phenomenon....

متن کامل

Market Forecasting and Trading Rules Based on Soft Computing Technologies

Hybrids of the soft computing (SC) technologies have been applied to market forecasting and trading rules, and in many cases have demonstrated better performance than competing approaches. The purpose of this research is to investigate a representative group of these applications and to document the manner in which hybrids of the SC technologies were implemented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999